<span class='title_c'>是的固态微波功率放大器已成为大型加速器微波功率源的首选
微波最初用于军事雷达,后来被应用到了电子直线加速器中。产生微波的地方称作微波功率源,就像是微波的发源地。
大功率微波功率源广泛用于各种微波装置中,例如电粒子加速器、广播电视、雷达、微波武器等等。目前世界上使用的大功率微波功率源一般是速调管和固态功率放大器。今日,沃特塞恩微波源为大家谈谈速调管与固态功率放大器的区别。
速调管属于电子真空功率器件,是上个世纪30年代发明的;40年代到60年代,在加速器、雷达、通信和电视广播等军用和民用微波电子系统的推动下,速调管取得了快速发展。受多种因素影响,我国目前尚不能生产出高质量的速调管功率源,很多大功率速调管不得不进口。
为使得大功率微波功率源不再依赖于进口,科学家们一直在努力,固态功率放大器顺势而现。
2004年,阮倜在法国SOLEIL同步光源完成了UHF(300~1000MHz)波段35kW固态放大器功率源,之后完成了180kW的固态放大器功率源。自从阮倜研制成功大功率固态放大器功率源并经过近几年的稳定运行后,大家发现:与速调管等电子真空器件放大器相比较,属于半导体功率器件的固态放大器功率源具有线性放大性好、工作温度低、工作电压低、寿命长、可靠性高、安装及维修方便等优点。
目前,大功率固态放大器功率源已成为大型加速器功率源的首选,其市场超过100亿元。
而国内专业的微波功率源生产商们也紧跟科技和市场需求的步伐,专门针对粒子加速器领域研发了粒子加速器专用固态微波功率源(固态微波功率放大器),其具有以下优点:
*可实现输出功率的连续调节、输出相位0-360°的调节、脉冲模式下占空比可调节。
*同时具有经过内部硬件、软件反馈控制,进一步提高功率、频率、相位等参数的稳定性。
*沃特塞恩粒子加速器专用功率源内置环行器和无源负载,可适应各种驻波比的负载应用,并拥有全面的保护功能,具有完备的保护机制和控制功能。
因粒子加速器领域的特殊性,频率、功率、脉冲特性均是根据需求而特定。
请问光子晶体中带隙宽度的定义是什么?
(2)将化学气相输运(CVT)技术应用于高真空系统,利用金属原子簇催化方法在氧化铝(Al2O3(0001))等衬底上制备ZnO,GaN等直接带隙宽禁带半导体材料的量子点,纳米线及其异质超晶格结构,探讨利用高真空系统制备低维量子点和纳米线的技术.CVT是制备量子点和纳米线最广泛和最有效的技术之一,已经成功用于高真空分子束外延系统,并合成了直径约40nm,具有原子级界面的InAs/InP半导体纳米线超晶格结构.研究表明,在高真空系统中能够更好地控制衬底的平滑度和清洁度,金属催化剂的粒度和均匀性分布,从而实现对量子点的大小,纳米线的直径和均匀性分布以及纳米线生长取向的控制.
(3)用同步辐射电子能谱,光谱等相关技术研究低维ZnO,GaN等宽带隙半导体材料的性能和结构,获取量子点,纳米线等低维结构的基本特征.同步辐射在宽带隙半导体材料低维结构研究方面有不可替代的技术优势:①在低维结构中包含了材料大量的表面和界面信息,费米能级的电子态密度和能带色散对材料或器件的性质起着决定性的作用,而对表面敏感的同步辐射光电子能谱就是研究这类问题最强有力的工具.随着超高真空系统的应用,原位制备的低维结构形成和量子效应的研究已成为可行.②宽带隙半导体的有效激发波长通常位于紫外或真空紫外区,在此波段无合适的常规光源,因此特别适合利用同步辐射光谱技术研究宽带隙半导体的激发,发射等光谱特性.
(4)在国家同步辐射实验室建立专门的材料研究室和低维结构同步辐射应用研究平台,探索用同步辐射研究纳米材料的新实验方法和技术.软X射线波长恰好在纳米量级的范围,其探测深度也决定了它所激发的光电子只来自于最外层的纳米级表面,发展与纳米结构尺寸相近的软X射线实验技术,可以得到纳米体系的原子结构特征.
(5)通过建立专门的高水平材料研究室和低维结构同步辐射应用研究平台的建立,吸引和培养更多优秀的,国家科技发展需要的创新型人才.
2."利用同步辐射技术研究金属蛋白质的结构"子课题的主要建设内容:
同步辐射光源以其高准直性,高光通量和波长连续可调等特点在蛋白质晶体结构研究中具有不可替代的优点.在国际上所有的同步辐射装置中,应用于研究蛋白质晶体结构领域的线站是用户最多,成果最突出的线站之一.合肥同步辐射光源经过二期工程改造,光源质量经初步测试已基本满足常规衍射数据和部分反常散射数据收集的需要.以我校生命科学学院为牵头单位开展的中国科学院结构基因组学研究已被列入国家基金委重点项目,863专项和中科院重大行动计划.随着我国结构生物学的不断发展,
其他研究单位的蛋白质晶体结构研究对同步辐射光源的需求也不断增加.为此,改造国家同步辐射实验室的X射线衍射与散射光束线的聚焦系统,将目前光束线出口处加毛细管聚焦系统,以进一步缩小聚焦点处的光斑尺寸,提高样品处的通量密度.充分利用二维探测器迅速发展的高,新科技成果,在国家同步辐射试验室X射线衍射与散射实验站的Mar 345成像板系统和Huber Y衍射仪上增添高效,快速的电荷耦合器件(CCD)探测器,以减少数据收集时间.通过以上两项工作进一步完善国家同步辐射实验室的X射线衍射与散射实验站的数据收集系统的硬件设施,以满足同步辐射X射线进行生物大分子晶体结构数据收集高通量的需要.
X射线吸收精细结构谱学(EXAFS)是近年来兴起并且正在发展中的测定金属蛋白质分子局域精细结构的新方法(称为BioXAS),它的最大特点是对样品不需要特殊处理(如结晶和标记),并且在局域精细结构的测定中具有超过大部分晶体结构的高分辨率.目前国际上正在发展此项技术研究金属蛋白质的金属配位中心的区域结构.金属原子在氧化还原和与底物成键反应过程中的结构变化通常小于0.1 .迄今,还没有一项实验技术能够获得金属原子周围的精细结构信息,但XAFS是研究这种微小结构变化的理想工具.通过研究金属格点的几何结构和电子结构,XAFS结果可以用于指导选择性氧化反应的新型催化剂的设计和某些新药物的设计,对了解酶的催化,免疫响应,光合作用等过程有着关键作用.它不但对于基础研究,而且对于医药产业的开发也有极为重大的直接关系.如神经变性疾病老年性痴呆(Alzheimer,Creutzfeldt-Jakob)是一种对人类危害较大的疾病,现在的研究推测Cu2+和其它金属元素Zn,Mn等在上述病变中起着很大的作用.目前,只有通过XAFS方法可以获得这些金属原子周围的结构信息.
由于生物分子比较复杂,以及活性样品的浓度极低,需要BioXAS在实验技术(数据采集,信号提取)和理论分析上都必须发展得很完善才能满足要求.XAFS实验只能在同步辐射装置上进行,而且需要研究者和同步辐射装置专业人员的协作.正是这些原因导致BioXAS对生物样品的研究发展缓慢.但最近两年国外的BioXAFS研究已有了迅速的发展,特别是在实验技术和解谱方法方面.尽管我国在这一领域的整体研究几乎还没有开展,但由于部分科学家通过积极参与国际合作已掌握其核心理论和实验技术,离国际上研究前沿不远,为我国在此领域赶超世界先进水平进而占据世界领先地位提供了很好的机会.通过该项目的建设,在国家同步辐射实验室XAFS实验站建立起适合蛋白质溶液样品的实验装置和计算软件.
3."同步辐射光学工程研究室"子课题的主要建设内容:
光束线是连接同步辐射储存环和实验站的桥梁,是同步辐射仪器的重要组成部分,是同步辐射应用的基础.在世界上大多数同步辐射实验室中,都大力发展有关光束线方面的专门研究,以适应同步光源发展,适应科学的发展.
国家同步辐射实验室已经在一期工程,国家八.五计划和九.五计划中分别建设了五条,一条和八条光束线,包括了红外,真空紫外,软X-光和X-光波段的不同类型的光束线.在上述工作中,实验室培养了一只技术队伍,在光学,精密机械,超高真空,测试及系统调试等各主要技术环节有一定的技术积累.
为了实验室光束线的维护和改造,为了国内先进同步光源的发展,为了同步辐射应用人才培养,提出设立国内第一个同步辐射光学工程技术的研究室,建立光束线光学设计,元件研制及测量,总体调试的技术系统,开展同步辐射光学系统研究,关键单元技术的研发,光束线系统集成和人才培养等工作.
4."光阴极微波电子枪的研究"子课题的主要建设内容:
随着同步辐射应用的发展,对光源亮度的要求越来越高,其解决办法是第四代光源——特别是基于直线加速器的自由电子激光,而自由电子激光对电子束流的品质提出了很高的要求:更高的电子束亮度,更低的束流发射度,更低的束流能散,更高的峰值流强和更高的电子密度.由于缺乏阻尼机制,直线加速器供给的束流的品质直接依赖于由注入器产生的束流的品质.对于基于直线加速器的自由电子激光,由自由电子激光物理可知,只有电子束流的发射度满足的条件,自由电子激光的光场和电子束的耦合作用才会达到最佳的效果,其中是自由电子激光波长.略大的发射度要求相应地加长波荡器的长度.增加造价.因此为了满足发射度要求,很重要的一个环节是必须改进粒子注入器的性能.一般要求其发射度在几派毫米.毫弧度量级,脉冲束流上百安培.为达到这一要求,光阴极微波电子枪被认为是最佳方案.如何获得短脉冲,高流强,低发射度,稳定性很高的电子源,近年来不少实验室在开展研究,并已取得较好的研究成果.
微波电子枪和现在使用的直流枪相比具有显著的优越性.因为击穿场强随着电磁波频率的升高而变大.最高的直流场强在不到几个兆电子伏特每米的情况下就会发生击穿.而在S波段的微波腔中,场强可达上百兆电子伏特每米.如此高的加速电场可以将电子在几个厘米的距离内加速到相对论速度.众所周知,空间电荷力的大小与γ2成反比,从而大大地减小了空间电荷效应对电子束初始发射度的影响.
C.H.Lee提出的用激光驱动的光阴极微波电子枪.光阴极发射的电流脉冲结构由驱动激光器的脉冲结构所决定,可以使得电子脉冲的宽度窄到皮秒量级,在相空间中占空比较小,从而无须聚束装置进行聚束,其电荷量由激光束的强度决定,因此可以通过调整激光功率调整束流强度,也就是说电子束的时间特性和强度可以通过激光器的脉冲结构调整而进行.因此光阴极微波电子枪可以得到更高的峰值电流密度,脉冲结构灵活可调.同时又因为微波电子枪高场强特性,采用适当的发射度压缩技术,可以获得非常低的发射度.
目前几种电子枪的比较:
电荷量(nc)
归一化横向发射度
(πmm.mrad)
rms束团长度
(ps)
γ
热阴极直流电子枪
(Beoing Corporation)
1.2
6.4
5
20
光阴极直流电子枪(SLAC)
8
100
5
80
热阴极微波电子枪(SSRL)
0.3
30
1
4
光阴极微波电子枪(BNL/ATF)
1
2.5
4.5
80
从表中可以看出,光阴极微波电子枪明显好于其它类型电子枪.
本子课题主要的建设内容:
设计并制作一个光阴极微波电子枪腔体,该光阴极微波电子枪腔体设计使用1.6腔的微波电子枪,工作在2856MHz,π模式,铜阴极,在腔的出口采用螺线管进行发射度压缩.预计峰值加速场强120MV,电荷量1nc,峰值流强100A,在场横纵向均匀分布的入射激光激励下,可以获得1πmm.mrad左右发射度的电子束,对高斯分布激光束可以获得2~3πmm.mrad发射度的电子束,.
本项任务的要解决的三个难点:
(1)发射度的压缩,采用光阴极微波电子枪就是为了获得低发射度,为达到这个目的,将采用螺线管进行发射度压缩,并对高强度激光脉冲进行整形.
(2)激光与高频微波高精度同步技术
(3)对光阴极微波电子枪的电荷量抖动和时间抖动的灵敏度提出了较高要求,这些由激光器决定.
5."合肥储存环束流横向不稳定性的研究与抑制"子课题的主要建设内容:
建立一套束流横向不稳定性的研究与抑制的高速横向逐束团反馈系统,开展束流横向不稳定性的研究,并进行束流横向不稳定性的抑制.
高速束团反馈系统需要实时跟踪每个束团的横向位置信息,在适当的时候送出反馈信号.
高速横向逐束团反馈系统主要由三部分组成:
(1)检测单元:用来测量束流位置和横向振荡幅度,为系统提供误差信号;
(2)信号处理单元:产生对束流激励的校正信号.它可以频域或时域实现,前者称为mode-by-mode 反馈,后者称为bunch-by-bunch反馈.由于数字技术的发展,采用数字方法具有经济有效等优点,所以人们常用数字方法实现bunch-by-bunch反馈,它包括A/D,DSP和D/A;
(3)激励单元:由宽带功率放大器和激励器组成,对束流进行作用,从而实现束流横向不稳定性的抑制.
该系统的核心是RF前端检测器,高速的数字信号处理和激励器的研制.系统带宽由最小束团间隔决定.对于HLS,系统带宽约为100MHz.
6."等离子体约束和输运"子课题的主要建设内容:
以高温等离子体,低温等离子体,尘埃等离子体和非中性等离子体为研究载体,研究"等离子体约束和输运"这一等离子体物理各研究领域中带共性的亟待解决的前沿课题,带动和促进等离子体物理学科的进一步发展.具体内容有:(1)通过建立宽频带电磁波耦合激发等离子体和脉冲高流强电子发射注入激发,探索最优激发和耦合条件,研究环形磁约束准稳态等离子体的形成和维持,准稳态等离子体极向流与环向流的驱动问题;研究准稳态下等离子体电流调制下的约束输运物理和技术,探索环形螺旋系统下,等离子体碰撞损失机制与直线近似的差别,静电和电磁湍流对粒子和能量的输运与约束的影响.(2)拟建立多功能ECR等离子体发生器,通过这一平台,开展低温等离子体输运过程的研究,进一步的期望通过输运过程的调节来控制等离子体加工,我们将开展对加工等离子体的空间分辨特性的研究.通过这些了解等离子体的输运过程特征.研究外界的电场,磁场,与热源相关的温度场等对输运过程的影响, 研究等离子体的电子温度的改变激发不同的化学反应对输运过程的影响,将这些研究和加工结果结合起来,通过这些研究积累数据,最终实现加工过程的有效控制.
7."极端条件下的核物质形态的实验研究"子课题的主要建设内容:
通过该子项目的研究,增加并丰富核与粒子物理重点学科的研究内容和发展方向,每年培养硕士生5-8名,博士研究生3-5名,与国内外有关单位联合培养研究生1-2名.积极做好人才引进工作,努力建设新型探测器研发实验室和极端条件下物质形态实验数据分析中心,扩大并改进PC Farm规模和性能,提高实验数据分析能力和水平;建立精密时间幅度测量谱仪,使探测器研发实验室达到国内领先,世界上同类实验室的水平.通过项目的完成,既出成果,又出人才,为继续保持并发展该重点学科的先进水平打下坚实的基础.
8. "能量可调的强流脉冲慢正电子束"子课题的主要建设内容:
在200 MeV Linac基础上,建立能量可调的脉冲束正电子束,具体建设内容有:
(1)辐射转换和慢正电子束的产生
高能电子轰击辐射体时会产生高能正电子.充分退火的钨箔对高能正电子有较高的慢化转换效率,采用25 μ m的钨箔制成百叶窗式的慢化体.在慢化体的后面安置加有负电压的栅极对再发射的慢正电子进行收集,聚集电极进一步将其加速到100 eV并聚焦,形成慢正电子束.
(2)慢正电子束的输运及环境磁场补偿
正电子在磁场中会沿磁场方向作螺旋运动,不同初始横向动量的正电子具有不同的运动半径.对能量为50-100eV的正电子,磁场强度需100-150Gs,就可使束流半径小于10 mm.轴向磁场可由螺线管或Helmholz线圈产生用于慢正电子束的输运.
由于正电子能量低,输运路径长,地磁场等环境磁场会引起束流偏离管道轴线,因此必须用补偿磁场抵销束流的漂移.
(3)脉冲正电子束延伸为准直流束
Linac电子束脉重复频率低,每个脉冲产生的正电子数量大,会在探测器中引起堆积效应,因此必须将脉冲正电子束延伸为准直流束.采用三电极Pennins-trap装置可形成准直流单能正电子束.
(4) 能量可调的脉冲束正电子束
正电子在固体中的寿命约为几百PS,因此正电子脉冲宽度(FWHM)要求大约为200ps.要得到脉冲宽度足够小,束斑不大的正电子束,必须分三步对束流进行切割和聚束.先由三栅极组成斩波器,将准直流正电子来改造为脉冲宽度5ns的束团;予聚束谐振腔内将束团予聚束到2ns ;最后,在主聚束腔将束团成形为FWHM为200ps的脉冲.在靶上加可调负高压,就形成能量可调的脉冲正电子束.
(5)用于表面和近表面测量的正电子寿命谱仪
以脉冲正电子在样品中湮没产生的511 keV γ射线作为时幅转换(TAC)的起始信号,主聚束输出的时间信号延迟后作终止信号,TAC的输出由多道分析器(MCA)进行记录得到正电子注入样品后不同深度的寿命谱.
(6)辐射防护,束流监控,安全连锁系统
高能电子打靶产生的高能γ光子及其发生的(γ,n)反应产生的大量中子辐射必需屏蔽到安全水平,所以必需建立辐射防护,束流监控,安全连锁系统.以确保人身安全.
二,建设效益
通过该项目的建设,拟达到以下预期效益:
1."低维结构宽带隙半导体材料的制备和同步辐射研究"子课题
(1)自行设计,研制和建立一套量子点和纳米线等低维结构直接带隙宽禁带半导体材料制备系统.
(2)通过该项目的建设,并与其它项目的联合在国家同步辐射实验室组建专门的材料研究室,以利于材料低维结构同步辐射的深入研究,与同步辐射用户更广泛的交流以及更好地开展国际合作交流.拟开展国际合作交流课题1项,申请国家或省部级科研基金1-2项.
(3)制备ZnO和GaN等直接带隙宽禁带半导体材料的量子点,纳米线及其异质超晶格结构.
(4)取得ZnO和GaN等直接带隙宽禁带半导体材料的量子点,纳米线及其异质超晶格结构同步辐射电子能谱,光谱等的初步信息.
(5)拟发表相关的高水平研究论文10-15篇,培养研究生10名左右.争取申请专利1-2项.
2."利用同步辐射技术研究金属蛋白质的结构"子课题
通过以上几项的建设工作进一步完善国家同步辐射实验室X射线衍射与散射实验站的数据收集系统的硬件设施,以满足同步辐射X射线进行生物大分子晶体结构数据收集高通量的需要.
(1) 完成国家同步辐射试验室二期工程的基础上,建立和发展用于结构生物学的同步辐射X射线衍射技术,主要包括:
① 以同步辐射的高通量为基础的快速,高通量的数据收集手段.
② 利用同步辐射的波长连续可调特性,通过单波长反常散射方法解生物大分子晶体结构的相角问题.探索多波长反常散射在国家同步辐射实验室的X射线衍射与散射实验站上的可行性.
③ 建立多光束同步辐射X射线衍射测定结构因子相角的方法.在数据分析方面,将多光束衍射测定的多重结构因子相角结构不变量作为原始数值,利用直接法进行进一步的推引,修正,从而得到更多正确的相角.
(2) 配置图像工作站,安装蛋白质晶体结构分析常见软件,为用户提供及时的数据处理和结构分析条件,使用户及时了解衍射数据质量并现场调整数据收集方案.配置大容量硬盘以满足多用户的数据存储.
(3) 建立和发展应用同步辐射收集生物大分子晶体结构数据,以及单波长,多波长反常散射实验和多光束同步辐射X射线衍射实验所需的数据分析方法及相应的分析软件.
(4) 建立测定金属蛋白质局域精细结构测定的EXAFS理论和技术.
3."同步辐射光学工程研究室"子课题
(1)通过建立同步辐射光学工程研究室,系统开展光束线光学工程中的理论与技术研发工作,为同步辐射应用仪器研发提供技术支持,为国内先进同步光源的发展提供技术支持,为同步辐射应用人才培养提供支持.
(2)开展光束线单元技术的研究,在光学元件的变形设计,控制和检测方面开展研究工作,为弧矢聚焦晶体单色器,可变参数光学元件的设计等方面提供技术基础.
(3)根据光栅的像差理论和光学系统的要求,建立全息光栅像差矫正系统的优化方法,设计出像差矫正全息光栅.
(4)通过自己的技术力量改造光电子能谱光束线(软-X光波段),使它在效率和分辨率方面达到原设计指标,以便充分发挥该实验站的效益.
(5)完成同步辐射光学工程专业教材编写,设计相应实验,为同步辐射应用培养人才.
4."光阴极微波电子枪的研究"子课题
(1)设计并制作一个光阴极微波电子枪腔体,达到可以进行实用的地步.
(2)研究高强度激光脉冲整形技术,能够调整其结构分布,适合于光阴极微波电子枪实验.
(3)发展激光与高频微波高精度同步技术,发展脉冲稳定的技术.
(4)发射度压缩技术研究.
(5)发展高功率束调管作为微波功率源.
(6)发展发射度测量技术.
(7)发展计算与处理分析的方法和技术.
(8)光阴极材料研究.
通过这项工作的完成,将使我们可以跟踪国际先进的加速器水平,并在此基础上进一步发展高亮度的第四代光源.
5."合肥储存环束流横向不稳定性的研究与抑制"子课题
(1)研究分析束流横向不稳定性模式,进行束流横向不稳定性模式的理论研究;
(2)利用研制的高速横向逐束团反馈系统进行束流横向不稳定性的抑制,提高束流流强,减小束流横向尺寸,降低束流发射度,从而提高束流品质,为光束线提供高品质和高稳定光源;
(3)发展分析和处理不稳定性测量数据的计算方法及相应软件;
(4)培养青年研究人员若干名.
6."等离子体约束和输运"子课题
通过本课题建设
建立一套(在国际上独)具特点的电磁波耦合激发等离子体和脉冲高流强电子发射激发注入的环形磁约束准稳态等离子体系统,将带动准稳态等离子体参数测量诊断等新技术和方法(例如,具有等离子体湍流研究必须的宽频带,低漂移,抗干扰的高性能信号隔离技术,和高时间高空间分辨海量实验数据压缩和处理技术等),更有效地开展磁化等离子体与特征波段电磁波相互作用机制与能量输运性质,磁场形态影响,与电流注入有关的碰撞输运等有关的基础物理问题研究.
建立多功能ECR等离子体发生器,可开展低温等离子体物理和应用研究,研究典型低温等离子体加工过程中(如薄膜的沉积过程),粒子流输运特征,离子体的能量的输运特征,外界源场如电场,磁场,温度场以及体系内可能的化学反应对输运过程的影响, 研究等离子体输运过程的动力学特征等.提高加工的效率, 积累数据,最终实现等离子体材料加工过程的有效控制.
7."极端条件下的核物质形态的实验研究"子课题
通过该子项目的实施,立足国内,加强国内外合作研究,建设实验核与粒子物理人才培养基地和新型探测器研发实验室,加强学科建设和人才队伍建设.
(1)增加并丰富核与粒子物理重点学科的研究内容和发展方向;
(2)建设实验核与粒子物理人才培养基地,每年培养硕士生5-8名,博士研究生3-5名,与国内外有关单位联合培养研究生1-2名;
(3)积极做好人才引进工作;
(4)努力建设极端条件下物质形态实验数据分析中心,扩大并改进PC Farm规模和性能,提高实验数据分析能力和水平;
(5)建设发展新型探测器研发实验室,建立精密时间幅度测量谱仪,使探测器研发实验室达到国内领先,世界上同类实验室的水平;
通过项目的完成,既出成果,又出人才,为继续保持并发展该重点学科的先进水平打下坚实的基础.
8. "能量可调的强流脉冲慢正电子束"子课题
21世纪科学的发展将是微观与宏观的相互渗透与密切结合,凝聚态物理,材料科学等的研究,将由
现在的宏观统计方法(包括宏观量子统计)深入发展到物质的原子层次物性研究,微观粒子的量子效应越来越显示出重要作用,这些研究将对物质科学,信息科学及计算机等学科的发展起到关键作用.
由于上述课题涉及微观体系的多粒子问题,加之材料样品在制备过程中条件复杂,且难于精确控制,造成原子所处环境多变,微结构复杂,使得所研究的问题变得复杂而困难,必须采用多种手段从各不同角度观测,再综合分析,才能获得满意的结果.探测微观信息的手段已有不少,例如各种电镜,卢瑟福背散射,中子衍射,深能级瞬发谱,二次离子谱等,虽然各自给出了许多有价值的结果,但这些方法基本上不能给出原子尺度局域缺陷及微观物相变化的信息,也无法探测表面最外面几层原子的状况,并且多为破坏性测量或造成较大的辐照损伤.慢正电子技术恰好弥补了这些手段的不足.
慢正电子技术有如下特点:①对缺陷及原子尺度的微结构变化极为灵敏;②无损探测;③可探测真实表面(几个原子层)的物理化学信息;④探测物体内部局域电子密度及动量分布;⑤正电子,电子偶素探针可以获得电子探针无法得到的更多的物理信息;⑥慢正电子技术具有能量可调性,因而可获得缺陷或结构不均匀性沿样品深度的分布,加之正电子具有分辨不同原子密度区域的能力,使慢正电子技术对复杂材料的分析有明显的优越性,因此有着十分广泛的应用,并不断发展新技术和拓宽应用领域.
预期效益
正电子对晶体的完整性及固体相变的高度灵敏性,是通过正电子捕获效应反映出来的. 可以用正电子湮没能谱多普勒展宽技术, 也可用正电子寿命定量测量来提供点阵缺陷的浓度,类型和内部结构等许多信息,而且应用范围广泛. 能量可调且单色性好的脉冲正电子束,使得对近表面及薄膜不同深度的寿命谱测量成为可能,这进一步扩充了研究范围.特别在以下几方面,可以充分发挥慢正电子束的特长.
表面和近表面缺陷研究用慢正电子束测量半导体缺陷有两大优点:
① 对空位有独特的灵敏度使之可以直接鉴别;② 不受材料的掺杂与导电性的影响.
(2)表面和近表面微结构研究
凝聚态物理,材料科学的深入研究已经涉及到原子层次的微结构问题,包括电子结构和费米面形貌.工业界的生产也急需微结构与物性相关的知识,如微结构对大规模集成芯片的影响.量子点特性,表面界面微结构的变化,固体浅表面界面,离子注入区,各种应变层等非均匀结构系统和微结构变化,包括缺陷的种类,浓度,大小;空洞的成长,成团,迁移和离解;位错的结构和密度等.用俄歇电子能谱,透射电镜,卢瑟福背散射等测试手段都已成熟,但慢正电子束技术对缺陷灵敏性及无损检验等特性具有独到之处.
(3)异质结构膜,表面及界面
在材料科学和电子工程中,异质结构膜,表面及界面的性质有着重要的作用.另外界面的微结构对材料的物理特性也有着至关重要的影响.高Tc超导薄膜已进入应用阶段,对其薄膜及界面的缺陷和微结构的定量研究可以改善制备工艺,以获得高性能的器件.各种多层膜已被广泛地研究和应用,慢正电子束是一个理想的研究各种膜与界面的微结构的技术.
以上是凝聚态物理应用基础研究.
(4)材料科学
用于各种功能材料薄膜微结构的研究,例如:半导体(离子注入缺陷,金属/半导体界面,本征缺陷等);纳米材料;超导薄膜;高聚物材料;防护膜涂层;铁电,铁磁薄膜;介孔材料等
综合上述, 本装置在学科建设和人才培养方面的效益可归纳为:
(1) 复杂材料的微结构与电子性质的研究提供新的分析测试平台.
(2) 学科建设:
① 扩展"粒子物理与核物理"重点学科的教学及科研领域,使本学科及相关的其他学科(凝聚态物理,材料科学等)交叉领域中进行高水平的基础和应用基础研究,培养复合型人才.
② 为其它许多学科的发展和提高研究水平提供了新的实验方法及研究手段.
(3) 队伍建设,人才培养:
① 在设备研制过程中培养高质量的大型科学仪器研发人才.
② 在应用研究过程中培养高质量的交叉学科研究人才.
三,验收指标
1."低维结构宽带隙半导体材料的制备和同步辐射研究"子课题
(1)低维结构材料制备系统一套,要求主室静态真空度达到10-11 torr量级,预室真空度达到10-10 torr量级.蒸发源温度达到1200℃以上,衬底温度可达到1000℃以上.
(2)与其它项目联合,在国家同步辐射实验室组建一个专门的同步辐射材料研究室.
(3)发表与低维结构材料生长和研究相关的高水平研究论文10-15篇,培养研究生10名左右.
(4)申请国家或省部级科研基金1-2项,国际合作交流课题1项.
2."利用同步辐射技术研究金属蛋白质的结构"子课题
(1)在国家同步辐射实验室X射线衍射与散射实验站,通过毛细管聚焦系统聚焦点处的光斑尺寸,将通量密度提高一个数量级以上(经费另筹),和更新CCD探测器方法以缩短每幅的阅读时间(约一秒左右),使总的数据采集时间减少一半以上.
(2)为了提高荧光探测效率在XAFS实验站建立27元固体探测器阵列装置(经费另筹),使探
同一微波网络在不同参考端口阻抗下得出的散射矩阵相同吗
分析测试中的现代微波制样技术¥26.60元 微波制样是分析测试中一项全新的样品预处理技术,它使传统的样品预处理发生了根本性的变化,已在实际应用中显示出强大的生命力和广阔的发展前景。本书是国内第一本介绍微波制样的专著。全书全面系统地介绍了微波制样的基础知识,基本原理和技术方法,微波制样的... 电磁场理论与微波技术基础解题指导¥29.45元 本书是与《电磁场理论与微波技术基础》(上、下册)相配套的教学参考书。全书分上、下两篇共12章,每章内容包括:主要内容与重点、主要公式以及例题,附录中给出8套自测试题及其参考答案。本书力求内容精练,表述清晰,便于自学。本书的例题主要选自教材中的习题?... 微波技术¥17.10元 本书为电子与通信工程系列教材之一。本书介绍了微波技术的基本概念、基本理论和基本分析方法全书共分7章;每章后都有一定数量的习题及具有启发性的思考题和精练的内容小结,书末附有习题答案。... 微波炉电磁炉轻松料理¥9.50元 董孟修,曾任王品台朔牛排二厨、陶板屋和风料理二厨、木南他连锁西餐厅行政主厨、香罗客西餐枯主厨、音乐石餐枯主厨、美琪饭店吧台长等职位。目前更在杨桃烹饪学讲师,并不定时在《快乐厨房杂志》发表料理专题,还出牌过《你最想学的40道南洋料理》、《150道西式酱?... 微波炉食谱/营养美味食谱¥13.11元 微波炉的出现,给家庭厨房带来一次新的革命,然而,以往人们对微波炉的功用带局限有很小一方面的认识,认为还不能取代传统炉具。其实,这是一种不全面的认识:它不仅具有传统炉具所不具备的功用,还几乎适用于烹饪传统炉具所能烹饪的任何菜肴,本书指导您用微波炉煎... 微波炉烹饪入门??烹饪入门技能培训书系¥10.45元 进入新世纪,生活在都市里的人们,生活节奏愈来愈快,对在家庭做菜肴有新的要求:一方面希望简捷方便、节省时间,另一方面要求菜肴味道鲜美、色泽美观,同时还必须保持厨房洁净。由于微波炉使用方便、操作安全,已经成为许多家庭一日三餐必不可少的烹调工具。然而... 微波炉美味600款¥19.00元 本套菜谱共30本,汇集了南北方以及各种风味的菜系,每本600余种做法。本书介绍了微波炉菜的做法,简单好学易做,是符合大众口味的家居生活常备书籍。... 经典美食--家庭微波美食¥9.50元 本书以通俗易懂的文字和精美的菜肴图片,简明扼要地讲解了经典健康美食的精妙制法,每款菜式包括材料、做法,以及健康关照,简明扼要地解说科学原理,点明制作关键,具有极强的实用价值和可操作性。... 微波炉美食谱¥18.81元 微波炉的出现对现代家庭厨房来说无疑又是一次新的革命。如何正确地使用及有效地利用微波炉,是广大微波炉用户所迫切关注的问题。本书应时而作,既介绍了微波炉的基础知识,又介绍了近500道微波炉实用菜肴的烹调方法,是一本适合现代家庭阅读的烹饪用书。... 妙用微波巧做菜700例¥18.05元 本书重点介绍了微波炉菜肴700例,包括肉类、禽蛋类、水产类、蔬菜类、汤类、米饭、面粉类、点心类、豆制品类、酱饮类等九大类。... 高功率微波源与技术¥93.10元 本书概述了美国近年来在高功率微波源和相关技术研究领域的主要进展,重点讨论了由美国国防部MURI计划资助所获得的高功率微波源及其相关技术的最新研究成果。全书共分12章。第1章为概述;第2章综述了美国国防部感兴趣的HPM技术研究现状;第3~6章介绍HPM源和脉冲缩短效... 微波工程基础¥36.10元 本书比较系统和深入地论述了微波技术的基本理论和基本分析方法。主要内容包括电磁声概述、传输线理论、导波与波导、微波网络、无源和有源微波电路、微波天线、微波传播、微波工程子系统等。全书采用场与路相结合的分析方法,以阐明基本概念为主,并给出定量的数学分... 微波晶体管放大器分析与设计(第2版)¥56.05元 本书从介绍二端口网络的各种常规矩阵参数入手,引出了用户射频到微波频段(10MHZ-20GHZ)最有效的散射参数系统(S参数),并以散射参数形式描述有源器件的主要交流性能,例如:增益、稳定性、单向性、活度以及驻波比等。本书第4章专题讨论了噪声的处理以及有关高频?... 射频与微波功率放大器设计¥36.10元 本书主要阐述设计射频与微波功率放大器所需的理论、方法、设计技巧,以及将分析计算与计算机辅助设计相结合的优化设计方法。这些方法提高了设计效率,缩短了设计周期。本书内容覆盖非线性电路设计方法、非线性主动设备建模、阻抗匹配、功率合成器、阻抗变换器、定?... 微波工程(第三版)¥56.05元 本书第1章至第4章介绍了电磁场基本理论和电路理论,第5章至第12章利用相关的概念阐明了各种微波电路和器件,第13章描述了几种微波系统,以便于读者了解前面讲述的各种微波电路和器件的应用及其对系统特性的影响。在基本理论方面,既介绍了经典的电磁场理论,又叙述... 微波固态电路设计(第二版)¥64.60元 本书是一本关于微波固态电路分析与设计的专著。本书共分为15章,其主要特点是:广泛覆盖无源和有源射频和微波电路设计技术;介绍了微波电路包括制造技术方面的具体问题处理经验,以及异质结构和宽禁带器件;综述MEMS技术;提供一些小型化和低成本电路设计方法;收?... 射频与微波通信电路??分析与设计(第二版)¥50.35元 本书在第一版的基础上对内容进行了扩展和更新。全书由13章和9个附录组成,按照从一般到具体的方式,在简略介绍通信系统、射频无线通信和微波地面通信的基础上,对所采用的射频和微波电路的设计进行了分析与讨论。本书有两个特点:一是注重实用,书中涉及的内... 微波电路引论??射频与应用设计¥42.75元 本书涉及了有关微波电路的几乎全部内容,主要包括微波电路概念、多端口网络、参量与测量方法、电路稳定性、各种微波元件与器件、微波电路的噪声分析、脉冲微波电路、非线性效应等,最后还给出了1.25GHz的放大器、振荡器、滤波器的设计实例。本书的内容有助?... 电磁场与微波技术¥23.27元 本书共分8章。主要内容包括:时变电磁场基础,平面电磁波基础,传输线理论,波导与谐振腔,平面、圆柱及圆球波函数,微波滤波器,天线基础。... 射频与微波电子学¥76.00元 本书是美国加州大学M.M.拉德马内斯博士撰写的RadioFrequencyandMicrowaveElectronicsIllustrated一书的中译本。本书内容丰富,编排合理,叙述清楚。本书的英文版在美国用作大学微波电子工程专业高年级和研究生的教材,授课两学期。本书主要内容分五部分?... 介质谐振器的微波测量¥28.50元 ... 空间微波遥感数据验证理论与方法¥76.00元 本书总结了作者近十年来在空间微波遥感数据验证理论与方法的研究成果,全面地论述了空间微波遥感在数据验证与定量信息获取的理论与方法。书中介绍了国内外空问微波遥感技术的主要进展,阐述了空问微波遥感信息的基础理论,讨论了多通道数据统计反演-D矩阵方?... 微波技术¥21.85元 本书以场路结合的方法系统地论述了微波技术的基本概念、基本理论和基本分析方法,并结合当今微波技术发展的需要,对微波电路的相关基础知识作了较全面的介绍。全书除绪论外共分8章,依次介绍了柱状导波系统中的电磁波及传输线理论、规则波导理论、微带及表面波波导?...
光纤激光器的工作原理
光纤激光器的工作原理如下:
由泵浦源发出的泵浦光通过一面反射镜耦合进入增益介质中,由于增益介质为掺稀土元素光纤,因此泵浦光被吸收,吸收了光子能量的稀土离子发生能级跃迁并实现粒子数反转,反转后的粒子经过谐振腔,由激发态跃迁回基态,释放能量,并形成稳定的激光输出。
光纤激光器的工作原理主要基于光纤激光器的特殊结构。激光器是由工作物质、泵浦源和谐振腔三部分组成,具体作用如下:
1、增益光纤为产生光子的增益介质。
2、抽运光的作用是作为外部能量使增益介质达到粒子数反转,即泵浦源。
3、光学谐振腔由两个反射镜组成,作用是使光子得到反馈并在工作介质中得到放大。
扩展资料:
光纤激光器的特点:
1、光束质量好。
光纤的波导结构决定了光纤激光器易于获得单横模输出,且受外界因素影响很小,能够实现高亮度的激光输出。
2、高效率。
光纤激光器通过选择发射波长和掺杂稀土元素吸收特性相匹配的半导体激光器为泵浦源,可以实现很高的光一光转化效率。对于掺镱的高功率光纤激光器,一般选择915纳米或975纳米的半导体激光器,荧光寿命较长,能够有效储存能量以实现高功率运作。
3、散热特性好。
光纤激光器是采用细长的掺杂稀土元素光纤作为激光增益介质的,其表面积和体积比非常大,约为固体块状激光器的1000倍,在散热能力方面具有天然优势。
中低功率情况下无需对光纤进行特殊冷却,高功率情况下采用水冷散热,也可以有效避免固体激光器中常见的由于热效应引起的光束质量下降及效率下降。
4、结构紧凑,可靠性高。
由于光纤激光器采用细小而柔软的光纤作为激光增益介质,有利于压缩体积、节约成本。
泵浦源也是采用体积小、易于模块化的半导体激光器,商业化产品一般可带尾纤输出,结合光纤布拉格光栅等光纤化的器件,只要将这些器件相互熔接即可实现全光纤化,对环境扰动免疫能力高,具有很高的稳定性,可节省维护时间和费用。
参考资料来源:百度百科-光纤激光器
关于物理的问题(高分)
百年物理大事记
1900年普朗克提出物质辐射(或吸收)的能量只能是某一最小能量单位的整数倍的假说,称为量子假说,标志着量子物理学的开始。庞加莱提出不能观测到绝对运动的观点,认为物理现象的定律对于相对作匀速运动来说各观察者来说必然是一样的,称这一信念为相对性原理,赛宾提出混响时间公式,开创了建筑声学的研究,瑞利发表适用于长波范围的黑体辐射公式。维拉德发现放射性射线中还有一种不受磁场影响的射线,称为γ射线。
1902年 吉布斯的《统计力学的基本原理》出版,创立了统计系综理论。勒纳发表光电效应的经验定律,亥维赛提出电离层的假设,后为阿普顿的实验所证实。
1903年 卢瑟福、索迪提出放射往元素的嬗变理论。
1904年 洛伦兹提出高速运动的参考系之间时间、空间坐标的变换关系,称为洛伦兹变换。
1905年爱因斯坦发表《论动体的电动力学》的论文,创立了狭义相对论,揭示了时间和空间的本质联系,引起了物理学基本概念的重大变革,开创了物理学的新世纪;提出光量子论,解释了光电现象,揭示了微观客体的波粒二象性,用分子运动论解决布朗运动问题;发现质能之间的相当性(质能关系),在理论上为原子能的释放和应用开辟道路。
1906年 爱因斯坦发表了固体热容的量子理论。巴克拉通过吸收实验,发现各种元素的特征X辐射。
1906~19l2年 能斯脱得出凝聚系的熵在等温过程中的改变随热力学温度趋于零的定理,称为能斯脱定理,1912年又提出绝对零度不能达到原理,即热力学第三定律的两种表达形式。
1907年 闵可夫斯基提出狭义相对沦的四维窨表示形式,为相对论进一步发展提供了有用的数学工具。外斯提出铁磁性的分子场理论,并引人磁畴的假设。
1908年 佩兰通过布朗微粒在重力——浮力场中的分布实验,证实爱因斯坦关于布朗运动的理论预测,宣告原子论的最后胜利。
1909年 马斯登、盖革在α粒子散射实验中证实了原子内部有强电场。
1910年 密立根用油滴法对电子的电荷进行了精密的测量,称为密立根油滴实验。布里奇曼利用自己发现的无支持面密封原理,发明一种高压装置,压力可达2×109帕。
1911年开默林——昂内斯发现纯的水银样品在低温4.22——4.27K时电阻消失,接着又发现铅、锡等金属也有这样的现象,这种现象称为超导电性,这一发现,开辟了一个崭新的物理领域。卢瑟福对α粒子大角度散射实验作出解释,提出了有核的原子模型,确立了原子核的概念,赫斯等人乘气球上升到12000英尺高空进行高空测量,根据大气的电离作用随高度增大而加强的现象,发现了来自宇宙空间的辐射——字宙线。第一次索尔维物理学会议在布鲁塞尔召开。
1912年 劳厄进行晶体的X射线衍射的研究,证实X射线的波动性;把衍射后的X射线用照相干片记录,得到具有一定规则的许多黑点,称为劳厄斑或劳厄图样。德拜导出低温时固体热容的三次方律。J.J.汤姆孙通过对极隧射线的研究,发现非放射性元素的同位素。
1913年玻尔发表氢原子结构理论,用量子跃迁假说解释了氢原子光谱,弗兰克、赫兹进行电子碰撞原子实验,为玻尔的氢原子结构理论提供了实验基础。斯塔克发现处在强电场中的光源发射的光谱线发生分裂的现象,称为斯塔克效应。奠塞莱发现元素的原子光谱谱线频率与该元素的原子序数间的关系,称为莫塞莱定律。布喇格父子通过对X射线谱的研究,提出了晶体的衍射理论,建立了布喇格公式,奠定了晶体X射线结构分析的基础。
1914年 西格班在莫塞莱工作基础上,发现一系列新的X射线,并精确测定各种元素的X射线谱,查德威克指出在β衰变过程中,放出的β射线具有连续光谱。
1915年 爱因斯坦建立了广义相对论,提出广义相对论引力方程的完整形式,成功地解释了水星近日点运动,被公认为人类思想史中最伟大的成就之一。索末菲在玻尔原子中引入空间量子化,并在电子运动中考虑到相对论效应。
1916年 爱之斯坦根据量子跃迁概念推出普朗克辐射公式,并提出受激辐射理论,后发展为激光技术的理论基础。密立根用实验证实了爱因斯坦光电方程。
1917年 爱因斯坦和德西特分别发表有限无界的宇宙模型理论,开创了现代科学的宇宙学。朗之万利用压电性制成换能器产生强超声波。
1918年 玻尔提出量子理论和古典理论之间的对应原理。
1919年 爱丁顿等人在巴西和几内亚湾观测日食,证实了爱因斯坦关于引力使光线弯曲的预言。卢瑟福用α粒子轰击氮原子核,打出了质子,首次实现人工核反应。阿斯顿发明质谱仪,精确测定了同位素的质量。
1920——1922年康普顿通过实验发现X射线被晶体散射后,散射波中除原波长的波外,还出现波长增大的波,这现象后称为康普顿效应,1922年采用光子和自由电子的简单碰撞理论,对这个效应做出了正确的解释。吴有训参与了康普顿的X射线散射研究的开创工作,以精湛的实验技术和卓越的理论分析,验证了康普顿效应。
1923 年 德拜提出解释强电解质在溶液中的表现电离度的理论,称为离子互吸理论。
1924年 德布罗意提出微观粒子具有波粒二象性的假设,称为德布罗意波,又称物质波,玻色考虑到微观粒子运动状态的量子化,并考虑了微观粒子的“全同性”,发表光子所服从的统计规律,后经爱因斯坦补充,建立了玻色·爱因斯坦统计。
1925年海森伯提出微观粒子的不可观察的力学量,如位置、动量应由其所发光谱的可观察的频率、强度经过一定运算(矩阵法则)来表示,创立了矩阵力学。随即和玻恩、约旦一起用矩阵方法,发展了矩阵力学,泡利根据对光谱实验结果的分析,提出在多电子原子中,不能有两个或两个以上的电子处于相同的量子状态的原理,称为泡利不相容原理,亦称不相容原理。康普顿、西蒙、盖革。博特证实单一微观过程中能量、动量守恒。乌伦贝克和古兹密特提出电子自旋理论。
1926年薛定谔在德布罗意物质波假说的基础上,创立了波动力学,证明矩阵力学和波动力学的等价性,还发表了符合相对论要求的波动方程。玻恩提出薛定谔波函数的统计解释。费米和狄拉克各自独立地提出受泡利不相容原理约束粒子所遵从的统计规则,后称为费米——狄拉克统计。阿普顿在研究长距离无线电波的形态时,发现高出地面150英里还存在一个反射或折射层,而且比其他层的电性更强,称为阿普顿层。戈达德发射以液态氧和汽油为推进剂的火箭。瓦维洛夫在铀玻璃中观察到与布格尔定律相抵触的现象,即非线性现象。
1927年海森伯提出在确定微观粒子的每一个动力学变量所能达到的准确度方面存在着一个基本的限度,这一论断称为不确定原理,它的具体数学表达式称为不确定关系式。玻尔提出量子力学的互补原理。戴维孙、革末和G.P.汤姆孙分别用实验获得电子的衍射图样,证实德布罗意波的存在以及电子具有波动性。维格纳提出空间宇称(左右对称性)守恒的概念。
1928年狄拉克提出相对论性量子力学,把电子的相对论性运动和自旋、磁矩联系起来。喇曼、曼杰斯塔姆和兰茨贝格独立地发现了散射光中有新的不同波长成分,它和散射物质的结构密切有关,后称为喇曼效应。伽莫夫、康登等人用波动力学解释放射性衰变。海森伯用量子力学的交换能解释铁磁性。索末维提出用有量子机制的金属电子论解释比热。盖革、弥勒发明了为电离辐射计数的盖革——弥勒计数器。
1929年海森伯、泡利等人提出相对论性量子场沦。德拜提出分子偶极矩的概念。哈勃发现河外星系光谱线红移量(星系退行速度)同距离成正比。卡皮察发现各种金属的电阻随磁场强度作线性增长的定律,称为卡皮察定律,汤克斯、朗缪尔提出等离子体中电子密度的疏密波,称为朗缪尔波。
1930年 狄拉克提出正电子的空穴理论。泡利提出中微子假说,用以解释β衰变谱的连续性。
1931年 狄拉克提出磁单子理沦。威耳孙提出半导体的能带模型的量子理沦。范德格喇夫发明一种产生静电高压的装置,称为范德格喇夫起电机。
1932年查德威克详细考察用α粒子轰击硼、铍的重复实验后,发现中子。安德森在宇宙线的实验观察中,发现正电子,即首次发现物质的反粒子。在此之前赵忠尧等人于 1929~1930年间发现了与正电子有关的“特殊镭射”。尤里等人发现重氢(氘)和重水。塔姆提出在周期场中断处的表面,存在局域的表面电子态,开创了表面物理学的研究。劳伦斯和利文斯顿建成回旋加速器。考克绕夫和瓦耳顿建成高压倍加器,用以加速质子,首次实现人工核蜕变。侮森伯。尹万年科独立发表原子核由质子和中子组成的假说。奈耳建立反铁磁性的理论。诺尔和鲁斯卡发射透射电子显微镜,突破光学显微镜的分辨极限。中国物理学会宣告成立。
1933年克利顿、威廉斯利用微波技术探索氨分子的谱线,标志着微波波谱学的开端。费米建立β衰变的中微子理论。迈斯纳、奥克森菲尔德发现金属处在超导态时,其体内磁感应强度为零的现象,称为迈斯纳效应。吉奥克进行了顺磁体的绝热去磁降温实验,获得千分之几开的低温。布莱克特用创制的自动计数器控制的云室照相技术研究宇宙线,从拍摄的照片上宇宙线的径迹中发现了正负电子成对产主过程的现象。
1943年 约里奥—居里夫妇用α粒子轰击原子核,发现人工放射性核素。费米用中子照射了几乎所有的化学元素,发现慢中子能强有力地诱发核反应。切伦科夫发现高速电子在各种高折射率的透明液体和固体中发出一种淡蓝色的微弱可见光,称为切伦科夫效应。
1935年爱因斯坦同波多耳斯基和罗森合作,发表向哥本哈根学派挑战的论文,称为EPR悖论,宣称量子力学对实在的描述是不完备的,从而引发了一场围绕量子力学的两种观点的争论。汤川秀树发表了核力的介子场论,预言了介子的存在。伦敦兄弟提出超导现象的宏观电动力学理论。泽尔尼克提出位相反衬法,而由蔡司工厂制成相衬显微镜。
1936年安德森、尼德迈耶在宇宙线的研究中,发现与汤川秀树预言的质量符合但性质有差异的介子称为μ介子。玻尔提出原子核的复合核的概念,认为低能中子在进入原子核内以后将和许多核子发生相互作用而使它们被激发,结果就导致核蜕变。朗道提出二级相变理论,即内能、熵、体积等不变,但热容量、膨胀系数和压缩系数等发生突变的相变过程的理论。德斯特里奥发现某些磷光体在足够强的交变电场中发光的现象,称为电致发光,又称场致发光。
1937年卡皮察发现温度低于2.17K时流过狭缝的液态氦的流速与压差无关的现象,称为超流动性,塔姆、夫兰克提出解释切伦科夫辐射的理论,雷伯制成射电望远镜,钱学森完成火箭发动机喷管扩散角对推力影响的计算。张文裕与别人合作发现放射性铝28的形成和镁25的共振效应规律,发现放射锂8发射α粒子。
1938年哈恩、斯特拉曼用中子轰击铀而产主碱土元素,直接导致核裂变的发现。拉比等人发明利用原子束或分子束的射频共振磁谱仪,精确测定核自旋和核磁矩。F.伦敦用玻色·爱因斯坦统计法提出解释超流动性的统计理论。蒂萨提出氦Ⅱ的二流体模型,预言热波即第二声波的存在。贝特、魏茨泽克独立地推测太阳能源可能来自它的内部氢核聚变成氦核的热核反应,提出了碳循环和质子—质子链两组核反应假说,用以解释太阳和恒星的巨大能量。
1939 年奥本海默、斯奈德根据广义相对论,预言了黑洞的存在,玻尔、惠勒、弗朗克提出原子核的液滴模型,用以解释重核裂变现象,迈特纳、弗里施恨据液滴模型,解释了铀核裂变,并预言每次裂变会释放大量能量。达德发明了压缩电话频带的言语分析合成系统,即通带式声码器。
1940年西傅格、麦克米伦人工合成超铀元素镎和钚。泡利证明了自旋量子数为整数的粒子服从玻色·爱因斯坦统计规律;自旋量子数为半整数的粒子服从费米—狄拉克统计规律。阿耳瓦雷茨、布洛赫发表中子磁矩的测定结果,克斯行建成回旋加速器。钱三强发现三分裂;与何泽慧一起发现四分裂。钱伟长提出关于板壳的内秉统一理沦。
1941年 朗道提出氦Ⅱ超流性的量子理论。罗西、霍耳由介子蜕变实验证实时间的相对论效应。布里奇曼发明能产生1010帕的高压装置。
1942年 在费米、西拉德等人颂导下,美国建成第一个裂变反应堆。板田昌一提出两种介子和两种中微子的假说。指出μ子不是汤川介子。哈密顿、彭恒武用核子的介子理论来解释宇宙线中的现象。
1943年 海森伯提出粒子相互作用的散射矩阵理论。
1944年 韦克斯勒提出自动稳相原理,为高能加速器的发明开辟了道路。托沃伊斯基用含有铁系元素的顺磁盐类为样品,观察到固态物质中的顺磁共振。布劳恩研制成V—2型远程火箭。钱学森参加研制成“二等兵A”导弹,后又研制成功其他几种导弹。
1945年 在奥本海默领导下,美国爆炸了世界第一颗原子弹。
1946年 朝永振一朗提出量子电动力学的“重整化”概念。珀塞尔、布洛赫等人分别在实验上实现了固体石蜡和液体水分子中氢核的共振吸收。阿耳瓦雷茨建成质子直线加速器,为直线加速器的发展奠定了基础。
1947年鲍威尔等在宇宙线中发现π介子。罗彻斯特在宇宙线中发现奇异粒子。库什等发现电子的反常磁矩。兰姆、雷瑟福研究氢原子能级结构,发现狄拉克电子论中两个重合的能级实际上是分开的现象,称为兰姆移位。贝特用质最重整化概念修补了量子电动力学,并解释了兰姆移位。普里戈金提出不可逆过程热力学中的最小熵产生原理。卡尔曼等发明了闪烁计数器,葛庭燧在金属内耗研究中奠定了“滞弹性”领域的理论基础,国际上把他创制的、研究内耗用的扭摆称为葛氏扭摆,把他首次发现的晶粒间界内耗峰称为葛氏峰。黄昆通过研究固体中杂质缺陷,提出X射线漫散射理论,被国际上称为黄散射。
1947~1948年 巴丁提出半导体表面态理论,并和衣喇顿一起发现晶体管效应,导致发明点接触型晶体管,一个月后,肖克莱发明PR结晶体管。
1948年施温格用电子质量的重整化概念解释了电子反常磁矩。费因曼用质量和电荷的重整化概念发展了量子电动力学,奈耳提出亚铁磁性的分子场理论。伽柏提出物体三维立体像的全息照相理论。张文裕发现μ子系弱作用粒子和μ-1子原子,被国际上称为张原子和张辐射,突破卢瑟福—玻尔原子模型,开拓奇特原子研究的新领域。
1949年 迈尔、延森等提出原子核的壳层结构模型。伽莫夫提出宇宙起源的原始火球学说。
1950年 朗道、京茨堡等提出超导态宏观波函数应满足的方程组。黄昆、里斯一起提出多声子的辐射和无辐射跃迁的量子理论,被国际上称为黄—里斯理论。洪朝生发现杂质能级上的导电现象,形成了杂质导电的概念。吴仲华提出叶轮机械三元流动理沦。
1951年 德梅耳特、克吕格尔在固体中观察到35CL和37CL的核电四极矩共振信号。黄昆提出晶体中声子与电磁波的耦合振荡方程式,被国际上称为黄方程。
1952年 A.玻尔、莫待森提出原子核结构的集体模型。格拉泽发明探测高能粒子径迹的气泡室。美国爆炸了世界上第一颗氢弹。
1954年 盖尔—曼引入核子、介子和超子的奇异数,并发现奇异性在强相互作用中是守恒的。汤斯等(包括中国学者王天眷)获得了氨分微波激射放大和振荡,巴索夫和普罗霍罗夫也几乎在同时独立研制了同样的微波激器,成为量子电子学的先驱。
1955年 坂田昌一在物质结构具有无限层次的观念的基础上,提出强相互作用粒子的复合模型。张伯伦、西格雷先后发现反质子、反中子。
1956年 李政道、杨振宁提出弱相互作用中字称不守恒,开尔斯特、奥年耳提出建造粒子对撞机的原理。
1957年吴健雄等用衰变实验证明了弱相互作用中字称不守恒,在整个物理学界产主极为深远的影响。巴丁、施里弗和库珀发表超导的BCS理论,成为第一个成功解释超导现象的微观理论。穆斯堡尔发现无反冲γ射线共振吸收现象,称为穆斯堡尔效应,后发展为穆斯堡尔谱学。劳孙提出受控热核反应实验能量增益的条件,称为劳孙判据。苏联发射了世界上第一颗人造地球卫星。
1958年 肖洛、汤斯提出利用受激发射产生特强光束和单色光放大器的设计原理,促进了激光技术的发展。
1959年 王淦昌、王祝翔、丁大钊等发现反西格马负超子。江崎玲於奈发现超导体的单电子隧道效应。范艾伦预言地球上上存在强辐射带,后称为范艾伦带。
1960年 梅曼制成红宝石激光器,他把自己成功的原因归结为坚持以红宝 石为工作物质,而其他研制组由于担心红宝石不能产生激光于中途放弃使用这种物质。4个月后,贾万等制成氦氨激光器。
1961年 盖耳—曼和奈曼分别提出用SU(3)对称性对强子进行分类的八重态方案,美国开始“阿波罗”号宇宙飞船登月计划。
1962年 约瑟夫森预言了超导体的一种量子效应,后称为约瑟夫森效应,为发展超导电子学奠定了基础。美国的布鲁黑文国家实验器发现有两种中微子——电子中微子和μ子中微子。
1964年 盖耳—曼和兹韦克提出强子结构的夸克模型。萨穆斯在气泡室中发现Ω-粒子,支持了SU(3)对称理论。中国成功地爆炸了第一颗原子弹。
1965年 中国的北京基本粒子理论组提出强子结构的层子模型。
1967年 中国成功地爆炸了第一颗氢弹。
1967—1968年 温伯格,萨拉姆分别提出电磁相互作用、弱相互作用的电弱统一理沦的标准模型。
1969年 美国发尉“阿波罗11号”飞船进行人类首次登月成功,普里戈金首次明确提出耗散结构理论。
1970年 江崎玲於奈提出超点降的概念。中国成功地发射第一颗人造地球卫星。
1972年 盖尔—曼提出了夸克的“色”量子数概念。
1973年 哈塞尔特等和本韦努等分别发现弱中性流,支持了电弱统一理论。
1974年 丁肇中、里希特分别发现一种长寿命,大质量的粒子。
1975年 佩尔等发现τ子、使轻子增加为第三代。
1976年 美国的着陆舱在火星两地着陆,成功地发回几万张火星表面照片。
1977年 莱德曼等发现Γ粒子。
1979年 丁肇中等在汉堡佩特拉正负电子对撞机上发现了三喷注现象,为胶子的存在提供了实验依据。
1980年 克利青发现量子霍耳效应。中国成功地向太平洋预定海域发射了第一枚运载火箭。
1983年 鲁比亚等发现电弱统一理论预言的传递弱相互作用的中间玻色子W+,W-和ZO。
1984年美国普林斯顿大学、劳伦斯利弗莫尔实验室用功率约1万亿瓦的高功率激光“轰击”碳和硒、钆靶,获得比常规X射线强100倍的X射线激光,从而使激光器的研制工作又向前推进一步。美国商用机器公司研制出一种称之为“光压缩机”的装置,产生了世界上最短的光脉冲,只有12×10^-15次秒。
1985年 中国科学院用原子法激光分离铀同位素原理性实验获得成功。
1986年 欧洲六国共同兴建的”超级凤凰”增殖反应堆核电站在法国克里麻佛尔正式投产并网发电。
1986~1987年 柏诺兹、谬勒发现了新的金属氧化物陶瓷材料超导体,其临界转变温度为35K,在此基础上,朱经武等人获得转变温度为98K的超导材料,赵忠贤等人获得液氮温区超导体,起始转变温度在100K以上,并首次公布材料成分为钇钡铜氧。
1988年 美国斯图尔特天文台发现了170亿光年远的星系,比已知的红移值达4.43的类星体还要遥远,该发现使人类所认识的宇宙首次形成星体的时间又推前数10亿年。中国北京正负电子对撞机首次对撞成功。
1989年美国斯坦福直线电子加速器与欧洲大型正负电子对撞机的实验组根据实验测得的ZO粒子产出率与碰撞能量的关系得出推论:构成物质的亚原子粒子只有3类。西欧、北欧14国研究人员把氘加热到1.5亿摄氏度,并把如此高温的等离子体约束住,创造了热核聚变研究的新记录。日本研制出全部采用约瑟夫森超导器件的世界上第一台约瑟夫森电子计算机,运算速度每秒达10亿次,功耗6.2毫瓦。仅为常规电子计算机功耗的千分之一。美国3架航天飞机4次发射成功,其中“亚特兰蒂斯”号航天飞机将“伽利略”号飞船送入太空,此飞船将在6年后飞抵木星进行探测。
1990年黄庭珏等研制成世界上第一台光信息数字处理机,该机的光子元件是一组光转换器,交换速度每秒1亿次,用砷化镓制成。中国清华大学核能技术研究所建成的世界上第一座压力壳式低温核供热堆投入运行。中国自行研制的“长征三号”运载火箭,准确地将“亚洲1号”卫星送人转移轨道,首次成功地用中国的运载火箭为国外发射商卫星。
另外你在拜读搜索"物理物理史"后找到更多答案。